(±)-4a, 125108-97-6; (±)-46, 125109-01-5; (±)-5, 125108-98-7; (±)-6a, 125108-99-8; (±)-6b, 125109-00-4; 14, 125109-04-8; 15a, 16686-11-6; (±)-15b, 125109-03-7; 16a, 125109-05-9; (±)-16b, 125109-02-6; 17, 125109-06-0; DL-18, 125137-41-9; DL-19, 125109-07-1; 20, 125109-08-2; (±)-21, 125109-09-3; DL-22, 125109-10-6; **23**, 125109-11-7; **24**, 125137-86-2; (±)-**25**, 125109-12-8; DL-**26**, 125109-13-9; **27**, 125109-14-0; **28**, 125109-15-1; (±)-**29**, 125109-16-2; **30**, 125137-87-3; (±)-**34a**, 125109-18-4; (±)-**34b**, 125109-17-3; Br(CH₂)₃COOMe, 4897-84-1; Br(CH₂)₃CH(OMe)₂, 24157-02-6.

Benzotriazole-Assisted Synthesis of Monoacyl Aminals and Their Peptide Derivatives

Alan R. Katritzky,* Laszlo Urogdi, and Annie Mayence

Department of Chemistry, University of Florida, Gainesville, Florida 32611

Received July 18, 1989

Adducts 8-11, derived from benzotriazole (7), an aldehyde (6), and an amide (5), react with ammonia to give various monoacylated aminals (12-14) and "gem-peptide"^{2a} derivatives (15) in a novel, convenient route, useful for peptide analogue syntheses and studies.

Reversing one or more of the amide groups (i.e. CHRCONH to CHRNHCO) of a linear peptide gives a so-called "partially modified retro isomer" and represents an important strategy in peptide analogue research.^{1a,2} The modified sequence requires both a malonic unit and a (much less easily available) α, α -diamino moiety. Such α, α -diamino units have been synthesized by Curtius-^{1,3,5} or Hoffmann-type^{2,3,4} rearrangements of protected amino acid derivatives. The appropriate "gem-peptides" are usually also synthesized by one of these degradations of a protected peptide amide,^{2a-c,4} and only in a few cases have monoprotected aminals (PNHCH(R)NH₂) been used as (or synthesized for) building units for their preparation.^{1a-b,5,6} In all cases, these monoprotected aminals have been synthesized via unsymmetrically bis-protected derivatives. Recently, α -carboxyl-substituted compounds were synthesized by Bock and co-workers⁶ from α -hydroxy-N-(benzyloxycarbonyl)glycine (1) in three-step sequences as shown in Scheme I for 4a and 4b. These α carboxyl-substituted aminals 4 are gem-analogues of aminomalonic acid derivatives, which are of only minor importance in peptide sequences.

Earlier we reported⁷ a convenient synthesis of compounds of type >NCH(R)X mediated by benzotriazole via the general route of Scheme II. More recently, this methodology with glyoxylic acid as the oxo component (R = COOH) and ammonia as the nucleophile allowed a

(1) (a) Goodman, M.; Chorev, M. Acc. Chem. Res. 1979, 12, 1. (b) DeBons, F. E.; Loudon, G. M. J. Org. Chem. 1980, 45, 1703. (c) Loudon, G. M.; Almond, M. R.; Jacob, J. N. J. Am. Chem. Soc. 1981, 103, 4508.

(2) (a) Chorev, M.; Shavitz, R.; Goodman, M.; Minick, S.; Guillemin, Science (Washington D.C.) 1979, 204, 1210. In the paper (Table I) the authors "suggest the following prefixes: g-for gem-diamino alkyl corresponding to the amino acid residue denoted", (e.g. g-Phe for -NH-CH-(BzI)-NH- fragment). Correspondingly, we apply the "gem-petide" terminology for peptides containing such "g-" units in the terminal position. (b) Verland, M. S.; Fuller, W. D.; Goodman, M. Eur. Pat. Appl., EP (128,654, 1984; Chem. Abstr. 1984, 102, 185492c. (c) Fuller, W. D.; Goodman, M.; Verlander, M. S. J. Am. Chem. Soc. 1985, 107, 5821. (3) Moutevelis-Minakakis, P.; Photaki, I. J. Chem. Soc., Perkin Trans. I 1985, 2277.

 (4) Pallai, P.; Goodman, M. J. Chem. Soc., Chem. Commun. 1982, 280.
 (5) Chorev, M.; Willson, C. G.; Goodman, M. J. Am. Chem. Soc. 1977, 99, 8075.

(6) Bock, M. G.; DiPardo, R. M.; Freidinger, R. M. J. Org. Chem. 1986, 51, 3718.

Scheme I

^a For designating of \mathbb{R}^1 , \mathbb{R}^2 , and \mathbb{R}^3 see Tables I–IV (all can be alkyl or aryl, additionally \mathbb{R}^1 can be OR or RCONHCH₂; \mathbb{R}^2 can be CO₂H or CO₂R; \mathbb{R}^3 can be CO₂H or CONH₂).

convenient synthesis of monoacyl- α -aminoglycines of type 4.8

We have now found that in adducts 8–11 (Scheme III), formed from various amides (including protected amino acid amides for compounds 11) and aldehydes, the benzotriazole moiety can be replaced by NH₃ providing (i) a convenient and versatile method for the preparation of various simple α -substituted monoacyl aminals 12–14, and (ii) a novel synthetic route to "gem-dipeptides" 15.^{2a}

^{(7) (}a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. J. Chem. Soc., Perkin Trans. 1 1987, 805. (b) Katritzky, A. R.; Yannakopoulou, K.,; Lue, P.; Rasala, D.; Urogdi, L. J. Chem. Soc., Perkin Trans. 1 1989, 225. (c) Katritzky, A. R.; Drewniak, M. J. Chem. Soc., Perkin Trans. 1 1988, 239.
(d) Katritzky, A. R.; Drewniak, M. Tetrahedron Lett. 1988, 29, 1755. (e) Katritzky, A. R.; Urogdi, L.; Mayence, A. Synthesis 1989, 323.

⁽⁸⁾ Katritzky, A. R.; Urogdi, L.; Mayence, A. J. Chem. Soc., Chem. Commun. 1989, 337.

Table I. Preparation of Benzotriazole Adducts 8-10 R¹CONHCH(R²)Bt

							analy	sis (calcd/fo	ound)
no.	\mathbb{R}^1	R ²	yield,ª %	cryst solvent	mp, °C	$R_{\rm f}^{\ b}$ (TLC)	C	Н	N
8a	BzlO	н	80	MeOH	124	0.7/BM	63.8/64.1	5.0/5.0	19.9/20.1
8 b	BzlO	Pr ⁿ	90	PE	72 - 73	0.8/BM	66.4/66.6	6.5/6.1	17.2/17.4
8c	BzlO	\Pr^{i}	75	Et_2O	170 - 172	0.7/BM	66.4/66.0	6.5/6.4	17.2/17.1
8 d	BzlO	${f Bu^i}$	85 (60)	Et_2O	121-123°	0.7/BM	67.2/67.3	6.8/6.6	16.5/16.8
8 e	BzlO	Ph	87 (60)	PE	130-131 ^d	$0.7/BM^{e}$	70.4/70.1	5.1/5.0	15.6/15.4
9a	Me	COOEt	72	Et_2O	146 - 147	0.6/BA	55.0/55.2	5.4/5.4	21.4/21.3
9b	Ph	COOEt	74	Et_2O	126 - 127	0.7/BA	63.0/62.9	5.0/4.9	17.3/17.2
9c	BzlO	COOEt	701	Et_2O	99-101	0.7/BA	61.0/61.1	5.1/5.1	15.8/15.7
10a	Me	COOH	91	Et_2O	193-195	0.2/P1	51.3/50.9	4.3/4.3	23.9/23.7
10b	Ph	COOH	90	Et_2O	193-194	0.4/P1	60.8/60.6	4.1/4.1	18.9/18.9
10c	BzlO	COOH	78	Et_2O	162 - 164	0.2/P1	58.9/58.8	4.3/4.4	17.2/16.7
10 d	^t BuO	COOH	40 ^g	Et_2O	133-134	0.2/P2	53.4/53.4	5.5/5.6	19.2/19.3

^a If an oil was isolated first, the yields in parentheses refer to the solid product. ^b See General Experimental. ^cLit.⁹ mp 121–123 °C. From the mother liquor the benzotriazol-2-yl isomer was isolated with hexanes: $R_f = 0.8/BM$; mp 93–94 °C; analysis 67.2/67.1, 6.8/6.6, 16.5/16.5; ¹³C NMR (75 MHz, in CDCl₃, δ ppm) 135.7, 126.5, 118.2 (Bt), 71.4 (N-CH-N), 67.2 (Z-CH₂), 44.0, 24.4, 22.1, 22.0 (Bu¹) signals. Signals of the 1-yl isomer are also present, because of the fast isomerization in solution. Overlapping prevents assignation of the ¹H NMR spectrum. ^d Pure benzotriazol-1-yl isomer (see Discussion). Lit.⁹ mp 115–117 °C, for a mixture of 1-yl and 2-yl isomers. ^ePartial "on-plate" decomposition observed. ^fAfter usual workup (see Experimental) 60% product is isolated; evaporation of the ethereal mother liquor followed by trituration of the residue with Prⁱ₂O gives an additional 10%. ^fIsolated by extraction into aqueous NaHCO₃, followed by acidification, reextraction into ether and evaporation; the resulting foam solidifies with hexanes and is filtered with ether.

Table II.	Preparation of	'Amino Acid-Benzotriazole	Adducts 11 R	¹ CONHCH(R ²)Bt
-----------	----------------	---------------------------	--------------	------------------------------------	-----

							analy	sis ^c (calcd/f	ound)	
no.	R^1CO^b	\mathbb{R}^2	yield, ^ø %	cryst solvent	mp,° °C	$R_{\rm f}^{~d}~({ m TLC})$	C	Н	N	
11a	Bz-Gly	Pr ⁱ	74 (s)	EtOAc	180-183	0.5/BM	64.9/64.5	6.0/6.0	19.9/19.8	
11b	Z-L-Val	\mathbf{Bu}^{i}	80 (o)	-	foam	0.6/BM	65.9/65.8	7.1/7.3	16.0/15.5	
11c	Z-iLeu	\mathbf{Pr}^{i}	50 (s)	Et_2O	140 - 149	0.7/HA	65.9/65.6	7.1/7.2	16.0/15.6	
11 d	Z-Phg	$\mathbf{Bu^{i}}$	88 (o)	Et_2O	$164 - 170^{e}$	0.7/BM	68.8/68.9	6.2'/6.3	14.8/14.5	
11e	Z-Phe	\mathbf{Pr}^{i}	73 (s)	EtŌH	178–183 ^e	0.6/HE	68.8/68.7	6.2/6.2	14.8/14.8	
11 f	Bz-Gly	COOEt	70 (s)	Et_2O	109-112	0.6/BA	59.8/59.7	$5.0^{\prime}/5.0$	18.4/18.3	
11g	Z-Gly	COOEt	70 (s)	ⁱ Pr ₂ O	115 - 116	0.7'/BA	58.4/58.4	5.1'/5.2	17.0/16.6	
11 h	Z-Gly	COONa	42 (s)	-	$132 - 142^{f}$	0.2/P2	51.1/51.0	4.3'/4.6	16.5/16.4	

^aAbbreviations: Bz = PhCO; Z = PhCH₂OCO; Gly = glycyl; Val = valyl; iLeu = isoleucyl; Phg = C-phenylglycyl; Phe = phenylalanyl. The starting amino acid derivatives are racemic, except for 11b. The starting Z-iLeuNH₂ is furthermore a $\sim 1:1 \alpha/\beta$ diastereomeric mixture. ^bYields for crude, TLC pure products, giving clean NMR spectra, but duplicated signals for the diastereomeric mixtures 11b-e: (s) = solid, (o) = oil. ^cMp and analysis given for the same, crude (11a-c,f-h) or crystallized, analytically pure (in the case of 11d-e diastereohomogeneous) products. ^dSee General Experimental. ^eMp and analysis of crystallized, diastereopure product. ^fCrude, dihydrate.

Preparation of Adducts 8-11 (Tables I and II). The condensation of amides and benzotriazole with aliphatic and aromatic aldehydes has been reported.^{7c} Extension of this reaction to include carbamates as the amide component⁹ (i.e. $BzlOCONH_2$ for 8a-e) requires an acidic catalyst; p-toluenesulfonic acid in toluene is used, with the usual azeotropic removal of the water formed, to give good yields with various aldehydes (see Table I). In all reactions, the formation of a minor side product was observed (TLC). This was isolated in the case of 8d and proved to be the benzotriazol-2-yl isomer of the major product 1-yl derivative (see footnote b in Table I). The isolated 2-yl isomer slowly isomerized in CDCl₃ solution to give an equilibrium mixture which is dominated by the benzotriazol-1-yl isomer. Adduct 8e, obtained previously⁹ as a mixture of isomers, has been isolated as the pure 1-yl isomer, consequently exhibiting a higher melting point than reported for the mixture (see Table I).

Reactions with ethyl glyoxylate as the aldehyde component take place under the same conditions (in toluene with *p*-toluenesulfonic acid catalyst in a Dean-Stark apparatus) to give the expected adducts **9a-c**; however, use of an excess of the ethyl glyoxylate is necessary to obtain good (70-75%) yields (Table I).

Condensations of glyoxylic acid with amides and benzotriazole proceed more easily. No catalyst is needed, and the reactions can be carried out at a lower temperature (i.e. in refluxing benzene, with a Dean-Stark adapter) using an equimolar ratio of the reactants to give adducts 10a-d. The isolation of products 10a-c is very convenient since the sparingly soluble, solid products precipitate and can be filtered off from the reaction mixture. Compound 10dwas found to be relatively unstable under the conditions employed and was isolated after a short reaction time (30 min) by an extractive workup procedure (see the Experimental Section).

Protected amino acid amides also form adducts with aldehydes and benzotriazole (11a-e, Table II). The reaction conditions, which depend principally on the nature of the aldehyde component, are the same as for the corresponding adducts 8 and 9. When excess benzotriazole was used (11b,e), it was removed during the workup procedure by alkaline (K_2CO_3) extraction. In cases 11b-e, the crude products are diastereomeric mixtures; no dominant asymmetric induction was observed in formation of the new chiral center. However, the separation of pure diastereomers was achieved in the cases of 11d and 11e. Surprisingly, the pure diastereomer of 11e was obtained in much higher yield (85%) than expected from the NMR analysis of the crude product ($\sim 1:1$ mixture), obviously due to preferred crystallization-equilibration phenomena. Condensations of the protected amino acid amides with glyoxylic acid and benzotriazole gave only poor results; adduct 11h was more conveniently obtained by hydrolysis of the appropriate ester 11g.

Reactions of Adducts 8–11 with Ammonia (Tables III and IV). These reactions were carried out in satu-

⁽⁹⁾ Katritzky, A. R.; Yannakopoulou, K., submitted for publication in Synthesis.

Table III. Preparation of Monoacyl Aminals 12-14 R¹CONHCH(R³)NH₂

							analy	sis (calcd/fo	ound)
no.	R1	R ³	yield, %	cryst solvent	mp, °C	R_f^a (TLC)	C	Н	N
$12a^b$	BzlO	Н	77	EtOAc	121-124	0.3/BM	54.5/54.4	5.7/5.7	7.9/7.8
$12b^b$	BzlO	Pr ⁿ	74	EtOAc	112 - 113	0.5/BM	57.8/57.9	6.6/6.7	7.1/7.1
$12c^{b}$	BzlO	Pr^i	66	EtOAc	125	0.4/BM	57.8/57.4	6.6/6.6	7.1/7.0
$12d^{b}$	BzlO	$\mathbf{B}\mathbf{u}^{\mathrm{i}}$	77	EtOAc	113-114	0.5/BM	58.8/58.8	6.9/6.9	6.9/6.8
$12e^{b}$	BzlO	Bzl	63	EtOAc	120 - 121	0.6/BM	62.4/62.1	5.9/5.9	6.3/6.3
13a	Me	$CONH_2$	91	MeOH	130-132°	0.4/CM	36.6/36.3	6.9/6.7	32.0/32.1
13b	Ph	$CONH_2$	86	Et_2O	130 ^d	0.6/CM	56.0/56.2	5.7/5.7	21.7/21.7
$13c^{e}$	BzlO	CONH ₂	37	е	113	0.6/CM	53.8/53.6	5.9/5.8	18.8/18.8
14 a	BzlO	COOH	70	Me_2CO	$142 - 144^{f}$	-	53.6/53.5	5.4/5.4	12.5/12.9

^a See General Experimental. ^b Yield, mp, and analysis given for the isolated tosylate salt. ^c The tosylate salt was also prepared in EtOAc; after purification by washing with MeOH, correct C, H, N analysis was obtained (C, 43.6/43.4, H, 5.6/5.6, N, 13.9/14.0). The salt gradually decomposes while heating; no mp could be detected. ^d Flash melting point (see General Experimental). ^eCHCl₃-MeOH-hexanes. ^fLit.⁶ mp 135 °C.

								analy	sis ^d (calcd/f	ound)
no.	st.ª	R ¹ CO ^b	\mathbb{R}^3	yield,° %	cryst solvent ^d	mp, ^d °C	R_f^e (TLC)	C	Н	N
15a	A	Bz-Gly	Pr ⁱ	75 (s)	EtOAc	132-133/*	0.2/BM	57.0/56.6	6.5/6.4	10.0/10.1
15 b	В	Z-L-Val	$\mathbf{B} \mathbf{u}^{\mathbf{i}}$	86 (s)	Et_2O	$130^{h,i}$	0.3/BM	64.4/64.1	8.7/8.5	12.5/12.4
15c	В	Z-iLeu	\mathbf{Pr}^{i}	87 (s)	EtOAc	135 ^{f,h,j}	0.4/BM	59.1/59.0	7.3/7.2	8.3/7.9
15d	В	Z-Phg	Bu ⁱ	78 (o) ^k	l	129-130	0.3/HA	62.1/	6.5/6.6	7.8/7.5
15e	С	Z-Phe	\mathbf{Pr}^{i}	98 (o)	Et_2O	105 ^h	0.3/BM	68.3/68.2	7.4/7.5	11.4/11.1
15f	Α	Bz-Gly	$CONH_2$	98 (s)	Et_2O	190-194	0.5/CM	52.8/52.9	5.6/5.6	22.4/22.5
15g	Α	Z-Gly	$CONH_2$	85 (s)	MeOH	124 - 125	0.4/CM	51.2/51.1	6.1/5.8	19.9/20.1
15h	Α	Z-Gly	COOH	48 (s)	H_2O	159 - 160	0.1/P2	51.2/	5.4/5.2	14.9/14.6

^a Stereocomposition of the starting material 11: A = racemate; B = crude adduct, ~1:1 mixture of diastereomers; C = crystallized adduct, single diastereomer. ^b See footnote *a* under Table II. ^c Yields for crude, TLC pure products, giving clean NMR spectra, but duplicated signals for the diastereomeric mixtures 15b-e; (s) solid, (o) = oil. ^d Cryst solvent, mp, and analysis given for the same, pure (in the case of 15b-e diastereohomogeneous) products (base or tosylate salt). ^e See General Experimental. ^fMp and analysis for tosylate salt. ^e Mp of the free base: 125 °C.^h ^h Flash mp (see General Experimental). ⁱ Mp of the tosylate salt: 110-112 °C. ^jMp of the free base: 122 °C.^h ^k The spectra of the crude product indicates presence of a minor impurity, probably 1-(benzyloxycarbonyl)-2-isobutyl-5-phenylimidazolidin-4-one. ⁱ Et₂O-EtOAc, 4:1.

rated alcoholic or aqueous NH₃ solution usually at room temperature. In the case of the ethyl glyoxylate adducts (9,11g,h) simultaneous amidation of the ester function occurs along with the displacement of the benzotriazole moiety. The required conditions depend strongly on the nature of the acyl (R¹CO) and R² substituents. Increasing reactivity was observed for $R^1 = Me < amidoalkyl < Ph$ < BzlO, and for $R^2 = COOH \ll alkyl < COOEt < Ph$ substituents. Following the reactions by TLC suggests that they lead to equilibria: small amounts of unreacted starting materials were often observed even after long reaction times. In the reactions of adducts lacking an acidic side chain, the addition of finely powdered K_2CO_3 highly increased the rate and led to complete reaction, presumably due to removal of the side product benzotriazole from the solution. From among the less reactive R^2 = COOH derivatives only the benzyloxycarbonyl compound (10c) gave the corresponding aminal 14a. The others (10a,b,d) required several weeks for complete conversion (i.e. until no more starting compound was detected by TLC), after which only unidentifiable, poorly soluble products could be isolated.

The separation of the products from benzotriazole depends on their solubility. In the aqueous case a simple filtration (12c), in most of the other cases evaporation and isolation with an appropriate solvent, afforded solid products in a practically pure state. The side product benzotriazole was removed in the mother liquor. In the case of the highly soluble compounds (12a-e), removal of benzotriazole was achieved by stirring the ethereal solution with solid K_2CO_3 .

The stereochemistry of the Bt/NH_3 displacement reaction was investigated in the case of preparation of "gem-dipeptide" 15e. Diastereohomogeneous starting adduct 11e was used, and the crude product, obtained in nearly quantitative yield (i.e. no separation of the potential diastereomers occurred), was investigated by reverse-phase HPLC under similar conditions as used, for example, by Conradi and Burton¹⁰ for separation of Boc-Phe-Phe-Gly diastereomers. Peak integration values revealed a 60:40 ratio in favor of the more hydrophobic component. A similar conclusion is obtained from the ¹H NMR spectrum of the crude product: \sim 3:2 duplication of the Phe-CONH proton signal can be observed at 6.5 and 6.2 ppm. Finally, single diastereomer Z-Phe-gVal was prepared⁴ from Z-L-Phe-L-Val NH₂¹¹ and was compared by ¹H and ¹³C NMR analyses with 11e proving clearly that the latter is a diastereomeric mixture. Thus, we can conclude that the displacement reaction proceeded in this case with almost complete racemization, probably due to a S_N 1-type reaction mechanism.

Because of the lack of stereoretention, all other bis-chiral adducts (11b-d) were subjected to the reaction with NH₃ as crude, diastereomeric mixtures and resulted in mixtures of diastereomer aminals 15. However, separation of the diastereomers occurred in each case during purification (crystallization or salt formation) leading to single diastereomers as final products (see Table IV).

The stability of the aminals 12–15 depends on their structure. The zwitterionic amino acids (14) are stable at room temperature, but the others show a tendency to form dimer derivatives $(R^1CONHCHR^3)_2NH$. This tendency is, again, highly dependent on the nature of the R^1 and R^3 substituents, just as is the rate of the Bt/NH_3 displacement reaction. For example, while the benzoyl derivative 13b does not dimerize during preparation in homogeneous

 ⁽¹⁰⁾ Conradi, R. A.; Burton, P. S. Int. J. Pept. Res. 1989, 33, 373.
 (11) Kuhl, P.; Zapevalova, N. P.; Könnecke, A.; Jakubke, H.-D. Monatsh. 1983, 114, 343.

Table V. ¹H NMR Spectral Data of Novel Benzotriazole Adducts 8-10 R¹CONHCH(R²)Bt

			•• •• •• •• •• •• •• •• •• •• •• •• ••				,
no.	solvent	instª	Bt signals	NCHN	\mathbb{R}^2	CONH	R ¹
8a	CDCl ₃	A	8.1-7.7 (2 H, m), 7.6-7.2 (2 H, m) ^b	6.0 (d) ^b	6.0 (d) ^{<i>b</i>}	6.5 (t)	7.6–7.2 (5 H, m), ^b 5.1 (2 H, s)
8b	CDCl ₃	В	8.1-7.8 (2 H, m), 7.6-7.0 (2 H, m) ^b	6.5 (m)	2.5-2.2 (2 H, m), 1.5-1.1 (2 H, m), 1.0-0.8 (3 H, m)	7.5-7.0 (m) ^b	7.6-7.2 (5 H, m), ^b 5.05 (2 H, AB q)
8c	CDCl ₃	В	8.05 (1 H, d), 7.77 (1 H, d), 7.55-7.1 (2 H, m) ^b	6.1 (t)	2.85-2.6 (1 H, m), 1.2 (3 H, d), 0.85 (3 H, d)	6.3 (d)	7.55-7.1 (5 H, m), ^b 5.05 (2 H, AB q)
9a	CDCl ₃	С	8.03 (1 H, d), 7.91 (1 H, d), 7.55 (1 H, t), 7.41 (1 H, t)	7.27 (d)	4.32 (2 H, q), 1.23 (3 H, t)	8.0 (d)	2.08 (s)
9b	CDCl ₂	в	$8.1-7.3 (m)^{b}$	8.1-7.3 ^b	4.32 (2 H, q), 1.23 (3 H, t)	8.1-7.3	$8.1-7.3 (5 H, m)^b$
90	CDCl ₃	С	8.08 (1 H, d), 7.85 (1 H, d), 7.55 (1 H, t), 7.40 (1 H, t)	7.02 (d)	4.30 (2 H, q), 1.18 (3 H, t)	6.9 (br)	7.33 (5 H, s), 5.1 (2 H, AB q)
10a	DMSO	в	$8.1-7.3 (m)^{b}$	$8.1 - 7.3^{b}$	С	9.8 (d)	1.93 (3 H, s)
10b	DMSO	В	8.25-7.75 (2 H, m), ^b 7.75-7.35 (2 H, m) ^b	7.75-7.35°	с	10.28 (d)	8.25-7.75 (2 H, m), ^b 7.75-7.35 (2 H, m) ^b
10c	DMSO	В	8.2-7.7 (2 H, m), 7.7-6.9 (2 H, m) ^b	7.7-6.9 ^b	с	9.5–9.1 (br d)	7.7-6.9 (5 H, m), ^b 4.95 (2 H s)
10 d	DMSO	В	8.1-7.8 (2 H, m), 7.6-7.2 (2 H, m) ^b	6.8 (br d)	7.6-7.2 ^b	8.1 ^b	1.37 (9 H, s)

^aA: Varian EM-360 (60 MHz). B: Varian XL-200 (200 MHz). C: Varian VXR-300 (300 MHz). ^bOverlapping signals. ^cNot observed.

Table VI. ¹³C NMR Spectral Data^a of Novel Benzotriazole Adducts 8-10 R¹CONHCH(R²)Bt

no.	solvent	inst ^b	Bt signals	NCHN	R ²	CONH	R ¹
8a	DMSO	Α	145.4, 132.1, 127.4, 124.1, 119.1, 111.1	53.6	-	156.2	136.4, 128.4, 128.0, 127.4, 66.1
8b	$CDCl_3$	Α	145.4, 132.8, 127.6, 124.1, 119.6, 110.1	64.8 (72.5)	36.2, 18.6, 13.2 (37.3, 18.2)	155.8	135.8, 128.4, 128.1, 127.6, 67.2
			(144.1, 126.4, 118.3)				
8c	DMSO	Α	145.2, 132.0, 127.9, 123.9, 119.2, 111.1	72.0	31.4, 19.0, 18.1	155.7	136.4, 128.3, 127.8, 127.2, 65.9
9a	DMSO	В	145.0, 132.0, 127.8, 124.3, 119.2, 111.1	62.8	165.4, 62.5, 13.8	170.0	22.1
9b	$CDCl_3$	Α	145.4, 132.1, 128.2, 124.4, 119.7, 110.3	63.5	165.4, 61.8, 13.7	167.0	132.8, 132.5, 128.6, 127.3
9c	$CDCl_3$	Α	145.6, 132.8, 128.2, 124.4, 119.9, 110.9	63.9	165.0, 63.5, 13.7	155.2	135.4, 128.5, 128.3, 128.1, 67.7
10a	DMSÖ	Α	145.1, 132.2, 127.7, 124.3, 119.2, 111.2	63.0	167.2	170.1	22.2
10b	DMSO	Α	145.2, 132.5, 127.7, 124.2, 119.2, 111.5	63.9	166.8	167.1	132.3, 128.5, 127.8
10c	DMSO	Α	145.2, 131.9, 127.9, 124.2, 119.2, 111.3	65.7	166.6	156.0	136.2, 128.3, 128.0, 127.6, 66.3
10 d	DMSO	Α	45.3, 131.8, 126.8	66.5	166.4	154.8	27.9, 79.2

^a Bt-2-yl isomer signals in parentheses (when observed). ^bA: Varian XL-200 (50 MHz). B: Varian XL-300 (75 MHz).

ethanolic solution and can be isolated in a pure form, the analogous benzyloxycarbonyl derivative (13c) gives, under the same conditions, a mixture of the monomer and dimer products. Using heterogeneous conditions (i.e. in water, see the Experimental Section) monomer 13c can be isolated in moderate yield, but attempted recrystallization from boiling EtOH leads to quantitative dimerization (see Table III, footnote e). Even this aqueous-heterogeneous technique yielded a monomer-dimer mixture in the case of the most reactive derivative 8e ($R^1 = BzlO$, $R^2 = Ph$). The α -alkyl compounds (12a–e) are also relatively unstable and are isolated as their stable toluenesulfonate salts.

The above mentioned instability is also observed while recording the melting points of the free monoacyl aminals. Using the "flash melting point" technique (see the Experimental Section) a sharp temperature range can be determined for the melting point; however, when the samples are heated slowly a wide melting range is observed at a much higher temperature. This phenomenon is obviously due to "on-plate" dimerization.

Application of these monoacyl aminals as peptide building units depends on their reactivity in usual peptide coupling reactions. Only a few such examples have been reported;^{5,6} acylations of α -amino-N-Z and α -amino-N-Boc glycine esters were accomplished by the carbodiimide method. We have now demonstrated that such monoacyl aminals, having either an unsubstituted or a carboxyl- or carboxamido-substituted central carbon atom, can be acylated by both DCC¹² and by active ester¹³ coupling techniques to give the protected "gem-dipeptides": Fmoc-Ala-Gly(NHZ)-OH (active ester, 45 %), Z-Gly-Gly-(HNOCPh)-NH₂ (DCC, 80%), Fmoc-Gln-NH-CH₂-NHZ (active ester, 76%). The products are stable compounds; recrystallizations were performed using DMF/H_2O , $AcOH/H_2O$, or hot AcOH solvents without any hydrolysis or decomposition.

All new compounds prepared were characterized by their ¹H and ¹³C NMR spectra, and these spectral data are recorded for the benzotriazole adducts in Tables V and VI, for the amino acid-benzotriazole adducts in Tables VII and VIII, for the monoacyl aminals in Tables IX and X, and for the gem-dipeptides in Tables XI and XII.

Conclusion

Mannich condensation of various amides, aldehydes, and benzotriazole gives adducts of type R¹CONH-CH(R²)Bt (8-11), which upon reaction with NH₃ result in versatile monoacyl aminal structures (R¹CONH-CH(R²)NH₂, 12-15) in a novel, convenient route. Using protected amino acid amides as the amide component leads to "gem-dipeptides" (15). Acylation of monoacyl aminals (12-15) with N-protected amino acids can be accomplished by usual peptide coupling techniques, demonstrating their potential application in the synthesis of peptide analogues.

Experimental Section

Melting points were determined on a hot stage microscope and are uncorrected. "Flash melting points" were taken for the unstable compounds (see Discussion) by placing the sample on a preheated hot plate and monitoring for 1 min without further heating. Systematic repetition of the experiment at various temperatures allowed an accuracy of ± 2 °C. NMR spectra were

⁽¹²⁾ Bodanszky, M.; Klausner, Y. S.; Ondetti, M. A. Peptide Synthesis; Wiley: New York, 1976; p 115.
(13) Kisfaludy, L.; Schon, I. Synthesis 1983, 325.

								171		
							$\mathbf{R}^{1} = \mathbf{R}$	³ CONHCH(I	R4)	
no.	solvent	instr ^a	Bt signals	NCHN	\mathbb{R}^2	CONH	R ³	CONH	CH	R ⁴
lla	DMSO	в	8.0-7.35 (m) ⁶	6.33 (t)	2.8-2.6 (1 H, m)	9.4 (d)	8.0-7.35 (5 H, m) ^b	8.65 (t)	3.9 (2 AB q) ^b	3.9 (1 H, 9 AB 2/6
11b ^c	CDC13	C	8.15-7.9 (2 H, 2 t)	6.87 (m)	1.13 (3 H, d) 0.57 (3 H, d) 2.5–2.1 (2 H, m)	8.75 (d),	7.55-7.2 (5 H, m), ⁶ 5.1 (2 H, m)	5.93 (d)	4.3 (br t)	(m (H 1) 8.1
			7.55–7.2 (2 H, m) ^b		1.5 (1 H, m)	8.6 (d)				1.0-0.5
11c ^c	DMSO	В	8.15 (2 H, m)	6.4 (t)	1.0–0.5 (6 H, m) ^b 1.4 (1 H, m)	9.5 (br)	7.65–7.25 (5 H, m), ^b 5.08 (2 H,	7.65–7.25 ^b	4.2-3.9 (m)	(6 H, m) ^e 2.8
			7.65–7.25 (2 H, m) ^b		1.3-0.4 (6 H, m) ^b		s)			(1 H, br) 1.3-0.4
lld ^d	CDC13	C	8.0 (1 H, d), 7.87 (1 H, d), 7.55-7.15 (2 H. m) ^b	6.7 (m)	2.2 (2 H, br)	8.4 (br)	7.55–7.15 (5 H, m), ^b 5.03 (2 H, hr)	6.3 (br)	5.47 (br)	(8 H, m) ⁶ 7.55-7.15 (m) ⁶
2	CONC	c			1.25 (1 H, m) 0.8 (6 H, br s)					(III)
-116-	OSMIC	ر	б.1 (2 п, br)	6.32 (br t)	3.15-2.6 (1 H, m)"	9.57 (d)	7.7-7.0 (5 H, m), ^o 4.87 (2 H, s)	7.7-7.00	4.45 (br)	7.7-7.0 (5 H m) ^b
			7.7-7.0 (2 H, m) ^b		1.05 (3 H, d)					3.15-2.6
JII	CDCl ₃ + DMSO	A	8.3-7.2 (4 H, m) ^b	8.3-7.2 ^b	0.58 (3 H, d) 4.55–4.0 (2 H, m) ^b	(p) 9.6	8.3-7.2 (5 H, m) ⁶	8.3-7.2	4.55-4.0 (m) ^b	(2 H, M) ⁵ 4.55–4.0 (7 H) ⁶
11g	CDCI ₃	в	8.03 (1 H, d), 7.85 (1 H, d), 7.50 (1 H, t), 7.35 (1 H, t)	7.3-7.1 ^b	1.17 (3 H, t) 4.23 (2 H, q)	8.64 (d)	7.3-7.1 (5 H, br), ^b 5.06 (2 H, s)	5.87 (br t)	3.97 (br t) ^b	(1. fr, ff) 3.97 (1 H, br
411	CDCl ₃ + DMSO	Α	8.05-7.7 (2 H, m), 7.5-7.0 (2 H, br) ^b	6.85 (d)	1.12 (3 H, t) _	(p) 0.6	7.5–7.0 (5 H, br), ^b 4.93 (2 H, s)	7.5-7.06	3.72 (s) ^b	t)° 3.72 ^b
a A comp	t: Varian EN	А-360 (cites aı	(60 MHz). B: Varian XL-200 (200) nd duplications observed. ^d Spectr	MHz). C: V _i um of isolate	arian VXR-300 (300 ed single diastereom	MHz). ^b O	verlapping signals. ° Spectrum was	s taken on cri	ude diastereom	eric mixtures;

Table VII. ¹H NMR Spectral Data of Amino Acid-Benzotriazole Adducts 11 R⁴CONHCH(R²)Bt

			Table VIII. ¹³ C NMR Spe	ctral Da	ıta" of Amino Acid–I	Benzotr	iazole Adducts 11 R ¹ CONHCH	(R ²)Bt		
							R ¹ = R	R ³ CONH	CH(R ⁴)	
no.	solvent	instr ^b	Bt signals	NCHN	\mathbb{R}^2	CONH	R ³	CONH	CH	R4
11a	DMSO	A	144.9, 132.3, 127.2, ^c 124.0, 119.0, 6 111.1	88.6	31.6, 18.9, 18.2	169.6	133.9, 131.3, 128.2, 127.2°	166.4	42.0	
$11b^{d}$	CDC13	в	145.2, 132.5, 128.0, 60.5, 124.2, 119.5, (110.3 (68.5) (144.0, 126.2, 118.0)	30.5 (68.5)	41.0,24.5, 22.1, 22.0	172.0	136.0, 128.5, 128.1, 127.9, 66.5	156.2	59.5	31.5, 19.0, 17.5
llc	DMSO	V	145.0, 132.0, 127.1, 123.9, 119.1, 111.2	8.9	31.2, 18.9, 18.2	172.2	137.0, 128.3, 127.6, 127.4, 65.4	156.1	58.8 [58.1]	35.9, 25.4, 14.9, 11.1 136.9, 34.1
	;	I								[30.2, 24.1, 14.2, 10.4]
11d ^g	cDCl ₃	В	145.3, 132.8, 127.8, 124.4, 119.4, 110.4	90.8	42.0, 24.4, 22.1, 21.8	170.3	135.9, 128.4, 128.1, 127.8/ 67.0	155.3	58.2	137.9, 128.8,
0 . 4 .		¢						1		127.9, 126.9
116	DSMU	n	145.0, 132.4, 127.3, 124.0, 119.1, 111.2	9.6	31.8, 18.8, 18.2	172.0	136.8, 128.2, 127.6, 127.5, 65.2	155.7	56.0	137.5, 129.2, 128.1, 126.4'
										37.8
111	DMSO	V	145.0, 132.2, 127.9, 124.4, 119.3, 111.3	52.9°	165.6, 62.6, ^e 13.8	169.9	133.8, 131.4, 128.3, 127.3	166.6	42.1	1
11g	CDC1 ³	A	145.3, 132.6, 128.0, 124.4, 119.7, 110.1 ((144.9, 107.9, 119.9)	33.4 /69 EV	165.0, 61.5, 13.7	169.9	136.0, 128.4, 128.0, 127.9, 67.1	156.6	44.1	I
4 11	DMSO	A	(144.2, 127.2, 110.3) 145.3, 131.9, 126.6, 123.6, 118.8, 111.9 /	(e:00) 1	165.7	169.7	137.0.128.5.127.9.127.7.65.6	156.6	43.5	1
θ,	t-2-vl ison	ner siør	hals in narentheses when observed ^{b}A .	Varian	XL-200 (50MHz) R-	Varian	XI300 (75 MHz) *0.000	r eimole	d Creatrum	, mae takan an amida
diaste	sreomeric	mixture	e. Most of the signals are duplicated, the	dominan	t ones are listed. "The	e iLeu si	gnals are duplicated, because of th	e startin	g iLeu was a	In α, β -diastereomeric
A VITT	DALLE	Suparis,	caute argurates opectatum of the isolated	n aigine	rastereouter. III une s	Dectrum	or the crute product most of the	a signais	are auplica	Led. "INOL ODSErved.

recorded using a Varian EM-360 (60 MHz), a Varian XL-200 (200 or 50 MHz), and a Varian VXR-300 (300 or 75 MHz) instrument as solutions in deuteriochloroform (CDCl₃) using TMS ($\delta = 0.0$ ppm) for proton spectra, and the solvent signal ($\delta = 77.0$ ppm) for carbon spectra as reference. Elemental analyses were performed in house on a Carlo Erba-1106 instrument under the supervision of Dr. D. Powell. For TLC, commercial silica gel plates (Merck DC – Alufolien Kieselgel $60F_{254}$, No. 5554 with the more polar solvent systems (H, P1 and P2) or Kodak Chromagram, No. 13181 with others) were used with the following solvent systems as eluent: benzene-acetone, 2:1 (BA); benzene-methanol, 10:1 (BM); chloroform-methanol, 3:1 (CM); n-hexane-acetic acidchloroform, 1:1:8 (HA); n-hexane-ethyl acetate-chloroform, 1:4:8 (HE); ethyl acetate-pyridine-water-acetic acid, 56:20:11:6 (P1) or 148:20:11:6 (P2). HPLC of aminal 15e was carried out on an Altex Ultrasphere ODS column (250×10 mm), equilibrated with 0.1% TFA/H₂O, using a linear gradient of 5–65% CH₃CN over a period of 60 min at a flow rate of 3 mL/min. Peaks were detected at 214 nm, 0.1 AUFS.

Benzyl N-(1-benzotriazolyl-2-phenylethyl)carbamate (starting compound for preparation of aminal 12e) was prepared according to the literature.⁹

Preparation of Benzyl Carbamate Adducts 8a-e (according to the procedure described in ref 9). Benzyl carbamate (3.0 g, 20 mmol), benzotriazole (2.4 g, 20 mmol), and aldehyde (20 mmol), and *p*-toluenesulfonic acid monohydrate (0.2 g, as a catalyst) in toluene (100 mL) were refluxed in a Dean-Stark apparatus for 5 h. After evaporation of the solvent the solid products were isolated with an appropriate solvent (see Table I).

Preparation of Ethyl Glyoxylate Adducts 9a-c. Benzotriazole (1.2 g, 10 mmol), ethyl glyoxylate (2.4 g, 20 mmol), and amide (10 mmol), and *p*-toluenesulfonic acid monohydrate (0.1 g, as a catalyst) in toluene (50 mL) were refluxed in a Dean-Stark apparatus for 3 h. After evaporation of the solvent the solid products were isolated by triturating the residue with a mixture of saturated aqueous NaHCO₃ and ether (10-10 mL).

Preparation of Glyoxylic Acid Adducts 10a–d. Amide (10 mmol), benzotriazole (10 mmol), and glyoxylic acid monohydrate (10 mmol) in benzene (30 mL) were refluxed in a Dean–Stark apparatus for (i) 4 h (10a,b), (ii) 2 h (10c), or (iii) 0.5 h (10d). The products, precipitating at room temperature, were filtered off and washed with ether.

Preparation of Amino Acid Amide Adducts 11a,b,d,e. Benzotriazole (1.8 g, 15 mmol), the appropriate protected amino acid amide (10 mmol) and aldehyde (15 mmol), and p-toluenesulfonic acid monohydrate (0.1 g, as a catalyst) in toluene (30 mL) were refluxed in a Dean-Stark apparatus for 2 h (for 11d and 11e after an initial stirring at room temperature for 30 min). After evaporation of the solvent (in the case of 11d 10% solid side product was filtered off first) (i) adducts 11a and 11e were isolated with ethyl acetate and ether, respectively, in solid form; (ii) for adducts 11b and 11d the residue was extracted with ethyl acetate and 1 mol/L aqueous K_2CO_3 (10–10 mL), the organic layer was then reextracted with K_2CO_3 solution (5 mL) and water (2 × 5 mL), dried over anhydrous MgSO₄, and evaporated to yield the crude products as TLC pure foams. Adducts 11a,b gave also acceptable C, H, N analyses in crude form. For 11d,e the analytical samples were obtained by crystallization with ether (11d) or with ethanol (11e) in 30% and 62% overall yield, respectively. Evaporation of the ethereal mother liquor of 11d gave the other diasteromer as a foam in almost pure state.

Preparation of Amino Acid Amide Adducts 11c,f. Benzotriazole (1.2 g, 10 mmol), the appropriate protected amino acid amide (10 mmol) and aldehyde (10 mmol), and *p*-toluenesulfonic acid monohydrate (0.1 g, as a catalyst) in toluene (30 mL) were stirred at room temperature for 30 min and then refluxed in a Dean–Stark apparatus for 2 h. Product 11c, precipitating at room temperature, was filtered off and washed with ether. For 11f, the solvent was evaporated, the residue was extracted with saturated aqueous NaHCO₃ and ethyl acetate (20–20 mL), the organic layer washed with water, dried (MgSO₄), and evaporated, and the brown, oily residue was crystallized with an ether–2-propanol, 7:1, mixture (20 mL) to give the solid product (50%). The mother liquor was evaporated and extracted with ethyl acetate and 1 mol/L K₂CO₃ solution (10–10 mL), the organic layer was washed with water, dried (MgSO₄), and evaporated, and the residue was

Table IX. ¹H NMR Spectral Data^a of Monoacyl Aminals 12-14 R¹CONHCH(R³)NH₂•HX

	1			NOID!	Dacyi Aminais 12-14 R COI		
no.	solvent	R	CONH	NCHN	R°	NH_2 or NH_3^+	X
12a	DMSO	7.37 (5 H, s), 5.11 (2 H, s)	8.34 (t)	4.26 (br s) ^b	4.26 (1 H, br s) ^b	8.14 (3 H, br s)	7.55 (2 H, d), 7.13 (2 H, d), 2.29 (3 H, s)
1 2b	DMSO	7.38 (5 H, s), 5.12 (2 H, s)	8.3 (d)	4.73 (br s)	1.65 (2 H, m), 1.3 (2 H, m), 0.85 (3 H, t)	8.15 (3 H, br s)	7.52 (2 H, d), 7.12 (2 H, d), 2.28 (3 H, s)
12c	DMSO	7.38 (5 H, s), 5.12 (2 H, s)	8.27 (d)	4.53 (br t)	2.02 (1 H, m), 0.9 (6 H, 2 d)	8.22 (3 H, br s)	7.53 (2 H, d), 7.13 (2 H, d), 2.28 (3 H, s)
12d	DMSO	7.37 (5 H, s), 5.12 (2 H, s)	8.32 (d)	4.8 (br)	1.8-1.55 (2 H, m), 1.55-1.4 (1 H, m), 0.86 (3 H, d), 0.83 (3 H, d)	8.17 (3 H, br s)	7.53 (2 H, d), 7.13 (2 H, d), 2.3 (3 H, s)
12e	DMSO	7.30–7.16 (5 H, m), ^b 4.98 (2 H, s)	7.97 (br)	5.12 (br)	7.30-7.16 (5 H, m), ^b 3.2 (2 H, m)	8.4 (3 H, br s)	7.74 (2 H, d), 7.12 (2 H, d), 2.33 (3 H, s)
13 a	DMSO	1.95 (3 H, s)	9.16 (d)	5.13 (d)	8.0 (1 H, s), 7.9 (1 H, s)	8.38 (3 H, s)	7.6 (2 H, d), 7.2 (2 H, d), 2.32 (3 H, s)
1 3b	DMSO	8.3-8.0 (2 H, m), 7.9-7.4 (3 H, m) ^b	9.0 (d)	5.3 (d)	7.9-7.4 (2 H, m) ^b	2.7 (2 H, br)	-
13c	$DMSO + CDCl_3$	7.34 (5 H, br s), ^b 5.09 (2 H, s)	7.12 (d)	4.82 (d)	7.34 (1 H, s), ^b 7.03 (1 H, s)	2.3 (2 H, br)	-
14a	DMSO (+TFA)	7.4 (5 H, s), 5.15 (2 H, s)	8.9 (d)	5.3 (d)	11.8–10.7 $(br)^c$	8.7 (3 H, br)	-

^a Varian VXR-300 instrument (300 MHz). ^b Overlapping signals. ^c Together with trifluoroacetic acid (TFA).

Table X. ¹³C NMR Spectral Data^a of Monoacyl Aminals 12-14 R¹CONHCH(R³)NH₂•HX

no.	solvent	$\mathbf{R}^{1 b}$	CONH	NCHN	R ^{3 b}	X ^b
12a	DMSO	136.4, 128.5, 128.3, 128.0, 66.2	156.1	47.1		144.9, 138.3, 128.1, 125.6, 20.8
1 2b	CDCl ₃	135.9, 128.9, 128.3, 127.6, 67.0	156.1	60.7	34.2, 18.0	141.2, 140.4, 127.9, 125.9, 21.2
12c	DMSÓ	136.4, 128.5, 128.2, 127.9, 66.1	155.8	64.4	30.4, 18.1, 17.4	145.2, 138.0, 128.0, 125.5, 20.8
12d	DMSO	136.4, 128.4, 128.2, 127.9, 66.1	155.6	58.3	40.3, 23.7, 21.0	145.2, 138.0, 128.0, 125.5, 20.8
12e	DMSO	135.2, 128.3, 127.5, 127.2, 65.2	154.5	60.2	134.1, 126.8, 126.5, 124.7, 37.0	142.0, 138.4, 127.3, 125.9, 20.1
13 a	DMSO	22.5	167.2	56.6	170.7	145.2, 138.2, 128.3, 125.7, 21.0
13b	DMSO	133.9, 131.0, 127.9, 127.1	165.9	60.7	172.9	-
13c	$CDCl_3$ (+DMSO)	135.3, 127.0, 126.5, 126.4, 64.6	154.6	60.9	171.3	-
14a	DMSO (+TFA)	137.0, 129.2, 128.9, 128.8, 67.4	156.5	59.5	168.5	-

^a Varian VXR-300 instrument (300 MHz). ^b The close aromatic signals of R¹, R², and X are interchangable.

crystallized with ether to give a second fraction of the product (20%).

Preparation of Amino Acid Amide Adducts 11g and 11h. N-(benzyloxycarbonyl)glycine amide (1.04 g, 5 mmol), benzotriazole (0.6 g, 5 mmol), ethyl glyoxylate (1.02 g, 10 mmol) and p-toluenesulfonic acid monohydrate (0.05 g as catalyst) in toluene (20 mL) were refluxed for 1.5 h. For preparation of adduct 11g, the solution was extracted with 1 mol/L K_2CO_3 (2 × 5 mL) and then with water (2 × 5 mL), treated with charcoal, and evaporated. The residue was crystallized with iPr₂O to give 11g as a white solid. For preparation of adduct 11h, the solvent was evaporated, the residue was shaken with 1 mol/L NaOH and ether (20-20 mL) for 10 min, and the aqueous solution was acidified with AcOH to give 11h as an off-white solid.

Preparation of Monoacyl Aminals 12a-e. Adduct 8 (10 mmol) and finely powdered K_2CO_3 (3.0 g) were stirred in methanolic NH₃ solution (30 mL, saturated at 0 °C) at 25 °C, in a closed flask (under pressure) for 3 h. The solid was filtered off, and the filtrate was evaporated in vacuo, at 25 °C, to dryness. The residue was stirred with dry ether for 30 min, and the solid was filtered off. *p*-Toluenesulfonic acid solution (10 mmol in 30 mL ethyl acetate) was added to the ethereal solution. The precipitating salt was crystallized at 5 °C overnight and then filtered off and washed with cold ethyl acetate.

Preparation of 1-(Acetylamino)-1-aminoacetamide (13a). Adduct 9a (2.0 g, 7.6 mmol) was stirred in methanolic NH₃ solution (10 mL, saturated at 0 °C) at 25 °C, in a closed flask (under pressure) for 5 days. The solvent was evaporated, and the residue crystallized with ether to yield a pink solid (1.0 g, 100%). Stirring the solid with MeOH gave white, analytically pure product (0.91 g, 91%), mp 130–132 °C.

Preparation of 1-Amino-1-(benzoylamino)acetamide (13b). Adduct **9b** (0.5 g, 1.5 mmol) was dissolved in ethanolic NH_3 solution (10 mL, saturated at 0 °C) and was kept at 5 °C in a closed flask overnight. After evaporation of the solvent (in vacuo, at 25 °C) the product was isolated with ether in a pure state (0.3 g, 86%), mp 174–182 °C.

Preparation of 1-Amino-1-((benzyloxycarbonyl)amino)acetamide (13c). Adduct 9c (2.0 g, 5.9 mmol) was stirred with commercial concentrated NH₄OH solution (20 mL) at 25 °C for 2 h. After addition of water (20 mL) the precipitate was filtered off and washed with cold water to give a white, solid product (0.48 g, 37%). Recrystallization by dissolving at room temperature in a CHCl₃-MeOH, 1:1, mixture (2 mL), and precipitation with hexane (5 mL) gave the analytical sample, mp 113 °C. Attempted recrystallization from boiling EtOH led to quantitative dimerization to α, α' -aminobis(((α -benzyloxycarbonyl)amino)acetamide) [ZNHCH(CONH₂)]₂NH: mp 177-180 °C; ¹H NMR (DMSO-d₆) δ 3.4 (3 H, b s, CONH + NH), 4.7 (2 H, t, CH), 5.0 (4 H, s, Z-CH₂), 7.7-7.1 (14 H, b, Ar + CONH₂); ¹³C NMR (DMSO-d₆) δ 171.3 (CONH₂), 156.0 (Z-CO), 136.9, 128.3, 127.7 (Ar), 65.6 (Z-CH₂), 64.0 (CH). Anal. Found C, 55.9; H, 5.4; N, 16.3. C₂₀H₂₃N₅O₆ requires; C, 56.2; H, 5.4; N, 16.5.

Preparation of 1-Amino-1-((benzyloxycarbonyl)amino)acetic Acid (14a). Adduct 10c (5 g, 15.3 mmol) was dissolved in methanolic NH₃ solution (50 mL, saturated at 0 °C) and stirred at 25 °C in a closed flask (under pressure) for 24 h. After evaporation of the solvent (in vacuo, at 25 °C) the product was isolated with acetone in a pure state (2.4 g, 70%), mp 142–144 °C (lit.⁶ mp 135 °C).

Preparation of "gem-Dipeptides" 15a-e. Adducts 11a-e (0.5 g) and finely powdered anhydrous K_2CO_3 (0.5 g) were stirred in methanolic NH₃ solution (5 mL, saturated at 0 °C) at room temperature in a closed flask (under pressure) for 4 h. The solvent was evaporated, and ice water (5 mL) was added to the residue. Product 15c solidified and was filtered off, while the others formed oils which were extracted with ethyl acetate $(2 \times 10 \text{ mL})$. The organic solutions were then washed with 1 mol/L K₂CO₃ solution (5 mL) and saturated NaCl solution $(2 \times 5 \text{ mL})$, dried over anhydrous MgSO₄, and evaporated to give the crude products. The products were pure by TLC and gave clean NMR spectra but duplicated ¹³C signals for the diastereomeric mixtures 15b-e. Analytical samples of 15b and 15e were obtained with ether (free bases), while the others were converted to tosylate salts with equimolar toluenesulfonic acid solution (0.5 M in ethyl acetate); for 15b a $4 \times$ volume of ether was used to precipitate the salt.

Preparation of "gem-Dipeptides" 15f-h. Adducts 11f-h (0.5 g) were stirred in methanolic NH₃ solutions (5 mL, saturated at 0 °C) at room temperature in closed flasks (under pressure) for (i) 4 days for 15f, (ii) 12 h for 15g, or (iii) 7 days for 15h. After

1			Table XI.	¹ H NMR Spe	ctral Data ^a of " <i>gem</i> -Dipeptide	les" 15 R ¹ CON	HCH(R ³)NH,	у•НХ.		
			R ¹	$= R^4 CONHCH_1$	(R ⁵)					
no.	solvent	\mathbb{R}^4	CONH	CH	R ⁵	(R ¹) CONH	NCHN	\mathbb{R}^3	NH ₂ or NH ₃ ⁺	X
l5a	DMSO	7.9 (2 H, d), 7.5 (3 H, m) ^b	8.82 (t)	4.0 (br s) ^{b}	4.0 (1 H, br s) ^b	8.75 (d)	4.72 (br)	2.03 (1 H, m), 0.95 (6 H, m)	8.2 (br s)	7.50 (2 H, m), ^b 7.13 (2 H, d), 2.28 (3
15b	CDCI	7.36 (5 H, s), 5.11 (2 H, s)	5.57 (d)	3.9 (t)	2.1 (1 H, m), 1.0-0.85 (6 H, m)	6.37 (br d)	4.8 (q)	1.67 (1 H, m), 1.40 (2 H, br t), 1.0–0.85 (e U m)b	1.87 (br s)	- n, s <i>j</i>
15c	CDC1 ₃	7.36 (5 H, s), 5.1 (2 H, s)	5.74 (d)	4.0 (t)	1.9–1.6 (2 H, m), ^b 1.2–1.05 (1 H, m), ^c 1.0–0.85 (6 H, m) ^b	6.58 (d)	4.58 (t)	(0.11, 11) 1.6-1.45 (1 H, m), ^c 1.0-0.85 (6 H m) ^b	1.9–1.6 (m) ^b	I
15d	DMSO	7.5-7.2 (5 H, m), ^b 5.08 (2 H, s)	9.08 (d)°	5.36 (d)	7.5-7.2 (5 H, m) ⁶	8.12 (d)°	4.83 (br)	1.75-1.15 H, m), 1.75-1.15 (3 H, m), 0.83 (3 H, 0.56 (3 H, 0.56 (3 H,	8.2 (br s)	7.55 (2 H, d), 7.12 (2 H, d), 2.28 (3
15e	CDC1 ₃	7.45-7.10 (5 H, m), ^b 5.07 (2 H, s)	5.8 (br t)	4.6-4.3 (m) ^b	7.45–7.10 (5 H, m), ^c 3.04 (2 H, br d)	6.5 and 6.2 (2 br)	4.6-4.3 (m) ^c	1.7–1.5 (1 H, m), 0.9–0.65 (6	1.9 (br s)	- п, s)
15f	DMSO	7.9 (2 H, d), 7.48 (3 H, br) ^b	8.8 (br s) ^c	3.95 (s) ^b	3.95 (I H, s) ^b	8.28 (br s) ^c	4.93 (s)	7.48 (1 H, br), ^b 7.25 (1 H c)	2.2 (2 H, br)	I
15g	DMSO	7.35 (5 H, br s), ^b 5.05 (2 H, s)	8.2 (br s)	$3.65 (s)^{b}$	3.65 (1 H, s) ^b	7.35 (br s) ^b	4.9 (s)	$(1.35 (br s)^{b})$	3.2-2.7 (br)	Ι
15h	D_2O^d	7.53 (5 H, s), 5.24 (2 H, s)	ø	5.24 (s) ^b	5.24 (1 H, s) ^b	o	ø	ø	ø	I
a S instru	pectral da ument. b_{\pm}	ıta given for purified Overlapping signals.	(in the case o ^c Interchang	of 15 b-e diaster	eohomogeneous) products, taken With 1 equiv of K ₂ CO ₃ . ^e Overla	t on Varian VX apping with the	R-300 (300 MI e H ₂ O signal (;	Hz) (for 15e on V 3.95 ppm).	/arian XL-200 ()	000 MHz))

Table XII. ¹H NMR Spectral Data^a of gem-Dipeptides 15 R¹CONHCH(R³)NH₂•HX

al.

		$\mathbf{R}^1 = \mathbf{R}^4 \mathbf{CONHCH}(\mathbf{R}^5)$				(\mathbf{R}^1)			
no.	solvent	R ⁴ °	CONH	CH	R ^{5 c}	CONH	NCHN	\mathbb{R}^3	Х
15a	DMSO	133.9, 131.4, 128.3, 127.3	170.1	42.4	-	166.6	61.6	30.3, 18.1, 17.2	145.2, 138.0, 128.2, 125.5, 20.8
15b	CDCl_3	136.2, 128.5, 128.2, 128.0, 67.0	156.5	58.3	30.9, 19.2, 17.9	171.2	60.7	45.3, 24.9, 22.5, 22.3	-
15c°	CDCl ₂	136.2, 128.5, 128.1, 66.9	156.4	59.9	37.3, 24.7, 15.5, 11.3	171.3	64.1	32.9, 18.0, 17.9	-
15d	DMSŎ	136.9, 128.4, ^d 128.1, 127.8, 65.7	155.8	58.2	$\begin{array}{c} 137.4, 128.4,^d 128.2,\\ 127.9 \end{array}$	170.9	55.7	40.2, 23.5, 22.9	145.1, 138.1, 127.7, 125.6, 20.9
1 5e ^d	CDCl ₃	136.4, 128.4, 128.1, 127.9, 66.9	156.0	56.5	$\begin{array}{c} 136.2, 129.3, 128.6,\\ 127.0, 38.8 \end{array}$	170.9	64.0	32.7, 17.6	-
15 f	DMSO	$134.0, 131.4, 128.4, \\127.4$	169.0	42.8	-	166.6	60.2	172.6	-
15 g	DMSO	137.1, 128.4, 127.9, 127.7, 65.5	156.6	43.6	-	169.1	60.1	172.5	-
1 5h	D_2O^e	137.7, 130.3, 129.9, 129.3, 68.5	159.6	45.1	-	172.7	62.6	177.2 [/]	-

^a Spectral data given for purified (in the case of 15b-e diastereohomogeneous) products, taken on Varian VXR-300 (300 MHz) (for 15e Varian XL-200 (200 MHz)) instrument. ^b The close aromatic signals are interchangable. ^c Small (10-15% intensity) additional iLeu peaks observed, due to the other α,β -diastereomer present: 58.8, 37.4, 26.2, 14.3, 11.6. ^d Overlapping signals. ^eWith 1 equiv, K₂CO₃. ^fCOO⁻.

evaporation of the solvent, products 15f and 15g were isolated with ether. The obtained sodium salt of 15g was dissolved in acetone decolorified with charcoal and precipitated by acidification with acetic acid. The crude products were pure by TLC and gave clean NMR spectra; for crude 15f good C, H, N analyses were also obtained. An analytial sample of 15g was obtained by washing with MeOH; 15h was purified by dissolving in 1 mol/L K₂CO₃ solution and reprecipitating, after filtration, with acetic acid.

Preparation of 1-(N-Fluorenylmethyloxycarbonyl-L-alanylamino)-1-((benzyloxycarbonyl)amino)acetic Acid (Fmoc-Ala-Gly(NHZ)-OH). 1-Amino-1-((benzyloxycarbonyl)amino)acetic acid (14a, 0.22 g, 1 mmol), N-fluorenylmethyloxycarbonyl-L-alanine pentafluorophenyl ester (Fmoc-Ala-OPfp, purchased from BioSearch Co., 0.48 g, 1 mmol), and triethylamine (0.2 mL, 1.4 mmol) were stirred in chloroform (10 mL) overnight. After addition of 1 mol/L HCl(aq) (5 mL) the precipitate was filtered off and washed with water and ether to give the crude product (0.23 g, 45%), mp 205-210 °C. Recrystallization from DMF-water gave the analytical sample, mp 205-207 °C; ¹H NMR (DMSO-d⁶) § 1.5 (3 H, m, Me), 4.25-4.5 (4 H, m, fluorenyl-CH and CH₂, Ala-CH), 5.12 (2 H, s, Z-CH₂), 5.6 (1 H, m, NCHN), 7.2-7.4 (9 H, m, arom), 7.64 (2 H, t, fluorenyl), 7.8 (2 H, d, fluorenyl), 7.55 (1 H, d, NH), 8.02 (1 H, 2 d, NH), 8.44 (1 H, 2 d, NH); ¹³C NMR (DMSO-*d*₆) δ 172.6 (COOH), 169.8 (amide-CO), 155.8 and 155.5 (carbamate-CO signals), 144.0, 143.8, 140.7, 128.4, 125.3, 120.1 (fluorenyl), 136.7, 127.8, 127.7, 125.3 (Ph), 65.8 and 65.7 (2 CH₂), 57.6 (NCN), 49.8 (Ala-CH), 46.7 (fluorenyl-CH), 18.1 (CH₃). Anal. Found: C, 64.0; H, 5.,4; N, 8.1. $C_{28}H_{27}N_3O_7$ requires: C, 65.0; H, 5.3; N, 8.1.

Preparation of 1-[N-(Benzyloxycarbonyl)glycylamino]-1-(benzoylamino)acetamide (Z-Gly-Gly-(HNOCPh)-NH₂). 1-Amino-1-(benzoylamino)acetamide (13b, 0.45 g, 2 mmol), \bar{N} -(benzyloxycarbonyl)glycine (Z-Gly, 0.45 g, 2.1 mmol) and N,N'-dicyclohexylcarbodiimide (DCC, 0.45 g, 2.2 mmol) were stirred in dry tetrahydrofuran at 25 °C overnight. The resulting gel was suspended with ethyl acetate and centrifuged twice. The solid residue was suspended in dimethylformamide (15 mL), and the insoluble dicyclohexylurea (DCU) was filtered off. Addition of ether (70 mL) to the filtrate resulted in precipitation of the crude product. Stirring with a chloroformmethanol, 1:1, mixture (10 mL) gave a TLC- and NMR-pure white powder (0.34 g, 80%, $R_t = 0.7/P1$). An analytical sample was obtained by recrystallization from acetic acid-water: mp 209-211 °C; ¹H NMR (DMSO- d_6) & 2.6–2.9 (2 H, m, Gly-CH₂), 5.05 (2 H, s, Z-CH₂), 5.91 (1 H, t, NCHN), 7.2–7.65 (11 H, m, 8 H, arom + Z-NH + NH₂), 7.9 (2 H, d, Ph), 8.37 (1 H, d, Gly-NH), 9.02 (1 H, d, PhCONH); $^{13}\mathrm{C}$ NMR (DMSO- $d_6)$ δ 169.8 and 169.2 (CONH $_2$ and Gly-CONH), 166.1 (PhCONH), 156.6 (Z-CO), 137.0, 128.4, 127.7 (Z-Ph), 133.5, 131.7, 128.3, 127.5 (PhCO), 65.6 (Z-CH₂), 57.1 (N-C-N), 43.6 (Gly-CH₂). Anal. Found; C, 59.2; H, 5.2; N, 14.5.

C₁₉H₂₀N₄O₅ requires: C, 59.4; H, 5.2; N, 14.6.

Preparation of 1-(N-Fluorenylmethyloxycarbonyl-Lglutamylamino)-1-((benzyloxycarbonyl)amino)methane (Fmoc-Gln-NH-CH2-NHZ). N-Fluorenylmethyloxycarbonyl-L-glutamine pentafluorophenyl ester (Fmoc-Gln-OPfp, purchased from BioSearch Co., 0.53 g, 1 mmol), benzyl(aminomethyl)carbamate p-toluenesulfonate (12a, 0.35 g, 1 mmol), and triethylamine (0.28 mL, 2 mmol) were stirred in dry dimethylformamide (10 mL) at 25 °C overnight. The resulting precipitate was filtered off and washed successively with dimethylformamide (5 mL) and ethanol (5 mL) to yield the crude, NMR-pure product as a white powder (0.4 g, 76%). An analytical sample was obtained by recrystallization from AcOH: mp 183-185 °C; ¹H NMR (DMSO-d⁶) δ 1.6-2.0 (2 H, m, Gln-βCH₂), 2.0-2.25 (2 H, b, Gln- γ CH₂), 4.0 (1 H, m, Gln-CH), 4.25 (3 H, b s, Fmol-CH + CH₂), 4.4 (2 H, b, NCH₂N), 5.04 (2 H, s, Z-CH₂), 6.8 (1 H, b s, NH), 7.25–8.0 (14 H, m, arom + NH); 13 C NMR (DMSO-d₆) δ 173.7 (CONH₂), 171.9 (amide-CO), 156.1 and 155.9 (carbamate-CO signals) 143.9, 140.7, 127.8, 127.1, 125.3, 120.1 (fluorenyl), 137.0, 128.3, 127.6 (Ph), 65.7 and 65.4 (carbamate-CH₂ signals), 54.3 (Gln-CH), 46.6 (fluorenyl-CH), 45.6 (NCH₂N), 31.6 (Gln-γCH₂), 27.8 (Gln-βCH₂). Anal. Found: C, 64.8; H, 5.7; N, 10.5. C₂₉-H₃₀N₄O₆ requires: C, 65.65; H, 5.7; N, 10.6.

Registry No. 5 (R^1 = OBzl), 621-84-1; 5 (R^1 = Me), 60-35-5; 5 (R^1 = Ph), 55-21-0; 5 (R^1 = OBu-t), 4248-19-5; 5 (R^1CO = Bz-Gly), 5813-81-0; 5 ($R^1CO = Z$ -Val), 13139-28-1; 5 ($R^1CO =$ Z-DL-Ile), 125515-94-8; 5 (R¹CO = Z-DL-alloIle), 33878-58-9; 5 $(R^{1}CO = Z-DL-Phg)$, 125515-95-9; 5 ($R^{1}CO = Z-DL-Phe$), 17324-88-8; 5 ($R^1CO = Z$ -Gly), 949-90-6; 6 ($R^2 = H$), 50-00-0; 6 ($R^2 = H$) Pr), 123-72-8; 6 ($\mathbf{R}^2 = i$ -Pr), 78-84-2; 6 ($\mathbf{R}^2 = i$ -Bu), 590-86-3; 6 $(R^2 = Ph)$, 100-52-7; 6 $(R^2 = COOEt)$, 924-44-7; 7, 95-14-7; 8a, 125453-11-4; 8b, 125453-12-5; 8c, 125453-13-6; 8d, 125453-14-7; 8e, 125453-15-8; 9a, 124676-18-2; 9b, 124676-16-0; 9c, 124676-15-9; 10a, 125453-16-9; 10b, 125453-17-0; 10c, 124676-19-3; 10d, 125453-18-1; 11a, 125453-19-2; $(R)-(R^*,S^*)-11b$, 125453-20-5; (S)- (R^*,R^*) -11b, 125453-21-6; 11c, 125453-22-7; (R^*,R^*) - (\pm) -11d, 125453-23-8; (R^*, S^*) -(±)-11d, 125453-24-9; (R^*, R^*) -(±)-11e, $125453-25-0; (R^*,S^*)-(\pm)-11e, 125453-26-1; 11f, 125453-27-2; 11g,$ 125453-28-3; 11h, 125453-29-4; 12a, 125453-30-7; 12b, 125453-31-8; 12c, 125453-32-9; 12d, 125453-33-0; 12e, 125453-34-1; 13a, 125453-35-2; 13b, 124676-21-7; 13c, 124676-20-6; 14a, 124676-23-9; 15a, 125453-36-3; L-(R)-15b, 125453-37-4; L-(S)-15b, 125453-38-5; 15c, 125453-39-6; (R^*, R^*) -(±)-15d, 125453-40-9; (R^*, S^*) -(±)-15d, 125453-41-0; 15e, 125453-42-1; 15f, 125453-43-2; 15g, 125453-44-3; 15h, 125453-45-4; Fmoc-Ala-OPfp, 86060-86-8; Fmoc-Ala-Gly-(NHZ)-OH, 124676-24-0; Z-Gly-OH, 1138-80-3; Z-Gly-Gly-(NHCOPh)-NH₂, 125453-46-5; Fmoc-Gln-OPfp, 86061-00-9; Fmoc-Gln-NHCH2nHz, 125453-47-6; OHCCOH, 298-12-4; [ZNHCH(CONH₂)]₂NH, 124676-26-2.